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5．Tsunami Approaching a Coast 

 
5.1 Tsunami Propagation in a Continental Slope Region [Note: Please check the 
change.] 
  Since a tsunami can be considered to be approximately a type of long ocean wave, its 
propagation velocity is given by the following formula: 

  gDc =                             (5.1) 

If the data on sea bottom topography is taken as ),( yxDD = , the wave propagation 
ray can be obtained by Snell’s law.  In general, a wave propagates along a path of 
minimum time.  We apply Snell’s law (which is based on the propagation of light) to the 
problem of the propagation of tsunamis. 
（Ａ）Tsunami propagating in the continental slope region   
  We assume that the coastline is straight and that the contours of the sea bed are 
parallel to the coastline.  Further, we assume that the sea depth changes linearly and 
is proportional to the distance from the coastline.  We set the origin at a point on the 
coastline, and take the y -axis along the coastline, and the x -axis away from the shore.  
We assume that the depth is given as 

   mxD =                            (5.2) 
Further, we assume that an unknown function )(xfy =  represents the wave 

(ray) of a tsunami and satisfies the condition that the following time integral has the 
minimum value: 
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   Finally, our problem reduces to the following. 
     Search for a function )(xfy =  such that the following integral  
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becomes a minimum.   
 
This is a mathematical problem of calculus of variations (“Henbunho”) using which we 
can determine a function that makes the value of an integral maximum or minimum.  
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［Mathematical Note: Method of the calculus of variations ］ 

If a function )(xfy =  maximizes (r minimizes) the value of the integral 

   ∫ ′=
b

a

dxyyxFI ),,(                                         (5-5)  

, )(xfy =  satisfies “Euler’s equation,” 

    0=− ′yy F
dx
dF                                         (5-6) 

In the special case that ),,( yyxF ′  does not contain x explicitly, Euler’s equation is 
simply given by  

    =′− ′yFyF  Const                                       (5-7) 

[Proof]  Differentiate (5-7) and we have  
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 Further, if ),,( yyxF ′  does not contain y  explicitly, Euler’s equation becomes 
simply 

    =′yF  Const.                                         (5-8) 

In the present problem, we have 
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This does not contain y explicitly, and hence we can apply (5-8); in such a case, we have  
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Solving this for  y′ , we set )2/(1 2Ca = ; this equation then  becomes 
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Integrating this wrt t , we have 
     )sin( ttay −=    
We finally reach the following form. 
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This is the ),( yx  relation expressed by the parameter t.  Even if (5.10) does not have 
the form of an explicit function, we can consider our problem to be solved.  (5.10) 
represents a cycloid curve.  If, using a chalk, we can mark a point on the tire of a 
bicycle, the trajectory of the mark when the tire moves is a cycloid. 
 Finally, we conclude that a point on a tsunami wave in the continental slope sea 
region will take the form of a cycloid.  
―――――――――――――――――――――――――――――――――――― 
 ［Problem］  Solve similar problems for: (a) the depth distribution is given by 

2)( bxxD =  and (b) bxkexD =)( . 
[Problem] Obtain the time integral (6-3) for one cycloid π２ｔ≤≤0( ）. 
［Edge wave］ If the tsunami wave is reflected at the coast and draws cycloids in the 
continental slope sea region, then we can understand that there is a type of “wave” that 
moves parallel to the coastline. We call such a wave “edge wave.” 
[Problem] Prove that the phase speed of an edge wave is a half that of a long wave 
corresponding to the depth at the deepest point of the cycloid.  
 
 (B) Tsunami wave trapped in a skirt sea region around an isolated island 
     Next, we consider the case of tsunamis moving around an isolated island.  The 
area of the island is small and the sea bottom topography is cylindrically symmetric; the 
depth is given by  
     

2)( brrD =                                       (5.11) 
In a polar coordinate system, an element of the line segment is given by 

θdrrds 22 ′+= ; hence, the time integral is given by 
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In this case, the integrated functional becomes rrrrrF 22),,( ′+=′θ , which is a 

case where the independent variable θ is not contained explicitly.（Note： Whether the 

letters yx,  or r,θ  are used is unimportant） 
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Euler’s equation is 

  CrrrFrF r =′+=′− ′
22  

Solving this for r′ , we have 

   r
C

Cr 2

21−
±=′ If we use Ｋ for the square root term, 

   Kr
d
dr

=
θ

This is easily solved as 

   
θKAer =                                           (5-13) 

(5-13) shows a logarithmic spiral, which we observe in nature, for example, in the shell 
of a snail; it is a somewhat “self-similar shape.” 

  In this manner, we reach the conclusion that 
    Once a tsunami reaches the skirt sea area around an isolated island, then all its 

energy is transferred to the coast of the isolated island.   Therefore, a tsunami wave 
is tends to become amplified in the sea area around an isolated island with a large 
skirt sea area.    

 
5.2  Amplification of a tsunami wave 
  Let us consider the amplification of a tsunami wave moving between two waves 
(rays).  At the origin, the width of the channel between the rays is 0b , and the wave 
crest is situated at 00BA ; here, the depth is 0D , and the tsunami wave has an 
amplitude of  0a .  This wave crest approaches the shoreline SS BA , and then the 
amplitude is assumed to be Sa .  The wave energy E∆  passing at  00BA  in the time 
interval t∆  is given by 
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Further, the energy at a shallow place SS BA  is given by  

   4/)2cos21(2 tckDechkDbgaE SSSSS ∆+=∆ ρ       (5-15) 

If we assume that there is no energy dissipation on the way, (5-14) and (5-15) assume 
identical values; hence, we have the following amplification formula. 
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Since a tsunami wave can be approximated as a long wave, we can substitute 

SSS kDkDkDkDkDkD →→→→ tanh,tanh,0,0 000 ; the amplification ratio is simply 
given by 
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     (5-17) 

Thus we have proved that the height of a tsunami wave changes in inverse proportion to 
the four power square root of the depth ratio (Green’s Law).  This formula is applicable 
up to Michell’s wave-breaking limit:  
   SS Da 73.0≤        (5-18) 

Actually, wave breaking begins at SS Da 5.0≤ , and the energy conservation law will 
not be applicable; it has the applicable limit given by (5-17). 
 ［Example］ If the amplitude of a tsunami wave at a depth of 4000ｍ is １ ｍ, then 
its height at 10ｍ depth becomes 4.47ｍ. 
 
 


